Show that the Geometric series \sum_{n=1}^{\infty} r^{n-1}=1+r+r^2+r^3+r^4+…..,where r > 0 , is convergent if r < 1 and diverges if r ≥ 1 | Geometric Sequences

keywords

## geometric series convergence

## geometric series examples with solutions

**Test The Following Series **

\frac{1}{3}+\frac{1.2}{3.5}+\frac{1.2.3}{3.5.7}+...\infty