# Find All the characteristic values and characteristic vectors

Share

Find the eigenvalues and corresponding eigenvectors of the matrix

## Find All the characteristic values and characteristic vectors of the matrix

{ \color {Blue} A= \begin {bmatrix}
1& 1 &1 \\
1& 1 &1 \\
1& 1 & 1
\end {bmatrix}}

## Solution

the characteristic equation of the matrix is

 \left  |A - \lambda I    \right  |=0
{\color {Blue} or \; \;  \begin {vmatrix}
1 - \lambda & 1  & 1  \\
1 & 1 - \lambda & 1\\
1  &  1 & 1 - \lambda
\end {vmatrix}=0}
{\color{Blue} or \;\; \begin{vmatrix}
3 - \lambda & 1 &1 \\
3 - \lambda & 1 - \lambda & 1\\
3 - \lambda & 1 & 1 - \lambda
\end{vmatrix}=0 }\;\; {\color{Red} on \; C_1 \rightarrow C_ 1 + C_ 2 + C_ 3}
{\color {Blue} or \; \; \;  (3 - \lambda )\begin{vmatrix}
1 & 1 & 1 \\
1 & 1 - \lambda & 1\\
1 & 1 & 1 -  \lambda
\end {vmatrix}=0 }
{\color {Blue} or \; \; \;  (3 - \lambda )\begin{vmatrix}
1 & 1 & 1 \\
0 & - \lambda & 0 \\
0 & 0 &  -  \lambda
\end {vmatrix}=0 } \; \; \; {\color{Red} on \; \; R_ 2 \rightarrow R_ 2 - R_1\; , \;  R_ 3 \rightarrow R_ 3 - R_1}
or  \; \; (3-  \lambda) \lambda ^ 2 = 0 \\ \\ \therefore \lambda=0,0, \lambda=3

The characteristic values are 0, 0, 3

{\color{DarkBlue} Let \; \; \;X=\begin{bmatrix}
x_1\\ x_2
\\x_3

\end{bmatrix} \; \;be \;  \;the  \; \;characteristic   \;vector \;corresponding  \\  \;to  \; the \; characteristic  \;value \;{\color{DarkOrange} \lambda=0 } \;then}
(A-0I)X=0
{\color {Blue} or \; \; \;  \begin{vmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 &  1
\end {vmatrix}\begin{bmatrix}
x_1\\ x_2
\\x_3

\end{bmatrix}= \begin{bmatrix}
0\\ 0
\\0

\end{bmatrix}} 
{\color {Blue} or \; \; \;  \begin{vmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 &  0
\end {vmatrix}\begin{bmatrix}
x_1\\ x_2
\\x_3

\end{bmatrix}= \begin{bmatrix}
0\\ 0
\\0

\end{bmatrix}} {\color{Red}\; \; on \; R_ 2 \rightarrow R_ 2 - R_1 \; ,\;  R_ 3 \rightarrow R_ 3 - R_1}

The coefficient  matrix is of rank 1 and equation have  3-1=2 linearly independent solutions.these equation reduced to a single equation

x_1+x_2+x_3=0
The \; solutions \; are\;  {\color{DarkBlue} x_1=1\; , \; x_2=0 \; , \; x_3=-1} \;and \; {\color{DarkBlue} x_1=0,x_2=1,x_3=-1
}
Hence \; \; X_1= \begin {bmatrix}
1 \\ 0
\\ -1

\end {bmatrix} \; and \; \; X_2= \begin{bmatrix}
0 \\ 1
\\ -1

\end {bmatrix}

Are characteristics vectors corresponding to the characteristic value 0

For \; \lambda=3 \;,we \,have
(A-3I)X=0
{\color {Blue} or \; \; \;  \begin{vmatrix}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 &  -2
\end {vmatrix}\begin{bmatrix}
x_1\\ x_2
\\x_3

\end{bmatrix}= \begin{bmatrix}
0\\ 0
\\0

\end{bmatrix}} 
{\color {Blue} or \; \; \;  \begin{vmatrix}
1 & 1 & -2 \\
1 & -2 & 1 \\
-2 & 1 &  1
\end {vmatrix}\begin{bmatrix}
x_1\\ x_2
\\x_3

\end{bmatrix}= \begin{bmatrix}
0\\ 0
\\0

\end{bmatrix}} {\color{Red}\; \; on \; R_ 1 \leftrightarrow  R_ 3}
{\color {Blue} or \; \; \;  \begin{vmatrix}
1 & 1 & -2 \\
0 & -3 & 3 \\
0 & 0 &  0
\end {vmatrix}\begin{bmatrix}
x_1\\ x_2
\\x_3

\end{bmatrix}= \begin{bmatrix}
0\\ 0
\\0

\end{bmatrix}} {\color{Red}\; \; on \; R_ 2 \rightarrow R_ 2 - R_1 \; ,\;  R_ 3 \rightarrow R_ 3 + R_2 +R_1}

Rank of the coefficient matrix is 2 and so these equation have 3-2=1 independent solution corresponding to the value  λ=3

These \; Equations \;reduces \;to \\ \\
x_1+x_2+x_3=0 \\
-3x_2+3x_3=0

{\color{Teal}  Solving \; these \; equations \; we \; get \ x_1=x_2=x_3=k

} \\ \\ \therefore  X=\begin{bmatrix}
k\\ k
\\ k

\end{bmatrix}, where \;k\ne0
 X=\begin{bmatrix}
1\\ 1
\\ 1

\end{bmatrix}, is \; the \; characteristic\; vector \; on \; taking \; k =1

Hence characteristic vectors are

 \begin {bmatrix}
1 \\ 0
\\ -1

\end {bmatrix},  \begin{bmatrix}
0 \\ 1
\\ -1

\end {bmatrix},\begin{bmatrix}
1\\ 1
\\ 1

\end{bmatrix}

Keywords

Related  find the area of the shaded region | can you find the area...

how to find eigenvalues and eigenvectors of a 3×3 matrix

eigenvalues of matrix

eigenvalues and eigenvectors

eigenvalues and eigenvectors of a 3×3 matrix solved problems

eigenvalues and eigenvectors question and answer

Share
Top 5 Most Expensive Domains Ever Sold 4 Must-Try ChatGPT Alternatives: Perplexity AI, BardAI, Pi, and More! Types of Trading Techniques in the Stock Market. ChatGPT app now available in India this AI chatbot can help you make your life more productive. What is wrong with following function code?